CS1020E: DATA STRUCTURES AND ALGORITHMS |

Lab 3 — Distributor
(Week 5, starting 5 September 2016)

Readme

You are given the design and header files for a system. This system is supposed to help a distributor keep
track of the stores they deal with, the products the distributor has, and which stores each product is sold at.
Complete the implementation of the Store and Product classes, and use them to achieve 2 to 3 sub-tasks:

1. Handle stores and product with limited functionality 65%
2. Handle stores and products with full functionality 30%
3. Additional functionality - Efficiently find the number of distribution groups 5%

You have to submit the three subtasks separately, but each successive subtask will add to the functionality
of the preceding subtasks.

Product
Store -_id:long

-_id:long - _brand : string
- _outlet : string - _name : string
- _name : string - _stores : Store**
- _products : vector<Product*> - _numStores : long
+ Store(id : long, outlet : string, - _numMaxStores : long

name : string) * o+ Product(id : long, brand : string,
+ ~Store() name : string, maxStores : long)
+ operator==(other : const Store&) : bool + ~Product()
+ getProductCount() : long + operator==(other : const Product&) : bool
+ addProduct(prod : Product*) : void + getStoreCount() : long
+ hasProduct(prod : Product*) : bool + addStore(store : Store*) : void
+ eraseProduct(prod : Product*) : void + hasStore(store : Store*) : bool
+ toShortString() : string + eraseStore(store : Store*) : void
+ toLongString() : string + toShortString() : string

+ toLongString() : string

For simplicity, brands, outlets, and names, are each one-worded, and only consists of letters. The id of a
store/product is a positive long integer. Each of the following is unique within itself:

e storeid

e (store outlet, store name) pair

e productid

e (product brand, product name) pair
i.e. there may be a store having the same id as a product, but no two stores have the same id; also, two
stores may have the same outlet but different store name, or have the same name but are different outlets.

The distributor does not want to sell each product in too many different outlets. There will be a system-
wide cap imposed on the maximum number of stores in which each product can be sold.

Page 10f 6

The system should support the following 7 functionalities:

e add a new store to system

e add a new product to system
e remove a store from system
e remove a product

e map product to store

e un-map product from store

e print all products and stores

+store <id> <outlet> <storeName>

+prod <id> <brand> <productName>

-store <id> OR -store <outlet> <storeName>
-prod <id> OR -prod <brand> <productName>
+map <brand> <productName> <outlet> <storeName>
-map <brand> <productName> <outlet> <storeName>
after all input has been read and processed

For example, if we want to distribute 'KitKat Chocolate' to '"Hougang NTUC', then we have to:
1. addastore +store 555 Hougang NTUC

2. add a product +prod 1337
and then

KitKat Chocolate

3. map product to store +map KitKat Chocolate Hougang NTUC

Input/Output Format

The first line in the input contains 2 < M < 3,000, the maximum number of stores a product can hold. Each
subsequent line contains one of the 6 types of operations explained above.

Each operation will output its result:

e when adding a new store to the system Store <short description> added

¢ when adding a new product to the system Product <short description> added

e when removing a store to the system Store <short description> removed

e when removing a product to the system Product <short description> removed
¢ when mapping a product to a store Product <prod short desc> mapped

to store <store short description>

e when un-mapping a product from a store Product <prod short description>

unmapped from store
<store short description>

A store/product's short description is:

-<id> <outlet/brand>

<name>-

A store's (similar for product) long description is:

=Store <short description>

=<p> product(s) [

= <prod short description> Repeat this line p times

=1 4 spaces

The products should be stored and output in the order they were mapped to the store.
If p==0, i.e. the store has no products, just display O products without square brackets ([])

=0 product(s)

Page 2 of 6

When printing all products and stores at the end of all operations, the system will output:

blank line

<i> store(s) remaining

blank line

<store long description> Repeat these two lines i times
blank line

<jJ> product(s) remaining

blank line

<prod long description> Repeat these two lines j times

The stores and products should be stored and output in the order they were added. Within a store/product,
the mappings should be displayed in the order they were mapped.

Start by viewing dist1.in and dist1.out for sample input and output.

Submission
Submit source files distributor.cpp, product.cpp and store.cpp ONLY. The 2 header files are already in
CodeCrunch, and will NOT be uploaded. If you are attempting x parts, ensure you submit to the first x tasks!

pe

U o
Limited Functionality - Manage Stores & Products N 65%

Just for this part, you can be assured that:

¢ when adding a new store/product to the system, the given store/product
0 will not already exist
e when removing a store/product from the system, the given store/product information
0 will match an existing store/product
0 will not have mappings to any product/store
e when mapping a product to a store
0 the given product will exist
0 the given store will exist
0 the number of stores the given product is sold at has not yet been maxed out
0 the product has not already been mapped to the store
e when unmapping a product from a store
0 the given product will exist
0 the given store will exist
0 the mapping between the given product and store will exist

Page 3 of 6

Tip
Don't start coding right away!

Understand the problem: Think how memory would look like when there are a few stores, products, and
mappings in the system. Then, think of what each member function of Product and Store should do, but
you don't implement it yet. Next, identify what your program should do in each operation.

Design: Come up with an algorithm for each operation, tracing what really happens in memory at each
step. Verify that your understanding is correct, that your algorithm for each operation does its job correctly
and completely. Finally, develop the algorithm for each member function of Product and Store.

Incremental coding and testing: Do not code the entire program at once. Implement Product and Store
member functions first, and test them in main(). Once you are satisfied, develop the printAll() member
function of your system, so that you are able to check whether the output at the end is somewhat correct.
Then, code the other member functions one by one and test incrementally.

. . | ©9 | 30%
Full Functionality - Defensive Programming Y,
People often make mistakes when entering input into a program. For this part, you can still assume that

the input format is valid, and that each field is one-worded. However:

e when adding a new store/product to the system, the given store/product
0 may already exist in the system - same id, or same (outlet/brand, name) pair

e when removing a store/product from the system
0 the given store/product information may not match an existing store/product
0 the matched store/product may have mappings to a product/store

e when mapping a product to a store
0 the given store/product information may not match an existing store/product
0 the number of stores the given product is sold at may have been maxed out (at capacity)
0 the product is already mapped to the store

e when unmapping a product from a store
0 the given store/product information may not match an existing store/product
0 the mapping between the given product and store may not exist

When adding a new store/product, there may be up to two existing matches. Only provide information
about the first match, i.e. the matching store/product that was added earlier.

When mapping a product to a store, you should only check for existing mapping when the number of
stores the given product is sold at has not yet been maxed out, i.e. follow the order given above.

Page 4 of 6

Output Formats

Adding store/product - Already exists in system
Store <lst match's short> already exists, cannot add <given short>
Product <lst match's short> already exists, cannot add <given short>

Removing store/product - Match does not exist in system
No such store
No such product
Removing store/product - Has mappings to product/store
Cannot remove, store <short description> is mapped to product (s)
Cannot remove, product <short description> is mapped to store(s)

Mapping product to store - Matching product or store does not exist in system

Cannot map, no such product or store
Mapping product to store - Product has number of stores maxed out

Product <product short> maxed out, cannot map to store <store short>
Mapping product to store - Product already mapped to store

Product <product short desc> already mapped to store <store short>

Un-mapping product to store - Matching product or store does not exist in system
Cannot unmap, no such product or store

Un-mapping product to store - Product not mapped to store
No existing mapping between product <product short description> and
store <store short description>

Sample Input/Output
See distri[2..3].in for sample input and distri[2..3].out for the corresponding expected output

N

b -)
Efficiently Find Distribution Groups Q +5%

You now use the same system for another distributor who has many 0O < stores < 3,000 and

0 < products < 3,000. In addition to the full functionality, you are to help the distributor to be able to query
how many distribution groups are needed.

A distribution group is a set of products and stores such that:
e every store outside of this distribution group is NOT mapped to any product in this group
e every product outside of this distribution group is NOT mapped to any store in this group
e there are no smaller distribution groups within a distribution group

Page 5 of 6

For N products and N stores, there may be up to N> mappings between products and stores. This algorithm
is too inefficient as proportional to N® products/stores are examined (O(N?) or cubic time):

assign distribution group id 1..N, one for each store
assign distribution group 1d N+1..2N, one for each product
for each mapping
oldGrp = max(store group id, product group id)
newGrp = min(store group id, product group id)
iT oldGrp == newGrp then continue examining next mapping
for each store
if store group
store group
for each product
if prod group id == oldGrp
prod group id = newGrp
count the number of unique group ids

== oldGrp

id
id = newGrp

Header File Changes

We just need up to two additional containers to do the job. Therefore, just for this part, the Store class
defined in store.h and Product class defined in product.h now have an additional member variable and 3
member functions each.

class Store {
long _group; // distribution group id
public: ... // add all of current store"s products to the vector
void appendAl IMappedProds(vector<Product*>& someProducts);
void setGroup(long group);
long getGroup();
}:

class Product {
long _group; // distribution group id

public: ... // add all of current products®s stores to the vector
void appendAl IMappedStores(vector<Store*>& someStores);

void setGroup(long group);

long getGroup();

};

Input/Output Format
If the query is ?groups, output a line:
<#> distribution group(s)

If the query appears once or more in the program, do NOT execute the print all operation.
-End of Lab 3 -

Page 6 of 6

